Electrochemical impedance spectroscopy for lithium-ion cells: Test equipment and procedures for aging and fast characterization in time and frequency domain.

Nils Lohmann, Patrick Weßkamp, Peter Haußmann, Joachim Melbert, Thomas Musch

In: Journal of Power Sources (273), S. 613-623.


New test equipment and characterization methods for aging investigations on lithium-ion cells for automotive applications are presented in this work. Electrochemical impedance spectroscopy (EIS) is a well-established method for cell characterization and analyzing electrochemical processes. In order to integrate this method into long-term aging studies with real driving currents, new test equipment is mandatory. The presented test equipment meets the demands for high current, wide bandwidth and precise measurement. This allows the cells to be cycled and characterized without interruption for changing the test device. The characterization procedures must be of short duration and have a minimum charge-throughput for negligible influence on the aging effect. This work presents new methods in the time and the frequency domain for obtaining the impedance spectrum which allow a flexible tradeoff between measurement performance, time consumption and charge-throughput. In addition to sinusoidal waveforms, rectangular, Gaussian and sin(x)/x pulses are applied for EIS. The performance of the different methods is discussed. Finally, the time domain analysis is applied with real driving currents which provides impedance spectra for state of charge estimation considering aging effects in the car.